REPORT DOCUMENTATION PAGE oMo N D o168

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
14-07- 2009 Fi nal Techni cal 01-11-2007 to 30-04-2009
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

(U) DEVELOPMENT OF PRI ME CYBER- | NFRASTRUCTURE FOR COVBUSTI ON

5b. GRANT NUMBER
FA9550- 08- 1- 0003

5c. PROGRAM ELEMENT NUMBER

61102F
6. AUTHOR(S) 5d. PROJECT NUMBER
Michael Frenklach and Michael Gutkin 2308

5e. TASK NUMBER

BX

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
University of California at Berkel ey NUMBER

Department of Mechani cal Engi neering
Ber kel ey, CA 94720-1740

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Ofice of Scientific Research

875 North Randol ph Street

Suite 325, Room 3112 11. SPONSOR/MONITOR’'S REPORT
Arlington, VA 22203-1768 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlinmted.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The initiative named PriMe (for Process Informatics Mdel) is designed to keep track of
nodel s, nodel paraneters, and experinental data in a global, integrated framework for the
field of Conbustion. It is aimed at curation of comunity data with the objective of
col | aborative devel opnent of reaction nechanisns of scientific explorations and predictive
nodel s for practical systens. This project provided funding for additional human resources,
a professional programrer, who extended the devel opnent of the PrlMe cyber-infrastructure by
developing one of its central parts, PriMe Wrkflow Application. The Report presents a
detail ed description of the software devel oped.

15. SUBJECT TERMS _ _ _ _ _
Model i ng, conbustion, global systens, web-based application, collaborative science

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Dr. Julian Tishkoff
a. REPORT b. ABSTRACT c. THIS PAGE | uL 49 19b. TELEPHONE NUMBER (include area
Uncl assified | Uncl assified | Uncl assified code)
(703) 696-8478

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Development of PrIMe Cyber-
Infrastructure for Combustion

Michael Frenklach and Michael Gutkin

Final Technical Report to AFOSR
July 14, 2009

Department of Mechanical Engineering
University of California
Berkeley, CA 94720

PriMe

Process Informatics J'.-u:n-l:ln-l
.

Table of contents

Report doCUMENTAtION PAJE.......cocveiiiii i ee e e e e e e e e e e e e e et e e e e e e e eeett e e e e e e eeansan e eeeeees 1
A [o1 (o To (U111 o] o IO PPPTPPRPPOUPPRPPP 5
1.1 Purpose of the dOCUMENTcoiiiii e e e e e e e 5

2 The COMMON SYSIEM SITUCTUIE ...t ettt e e e e e e e e e e s e e eeeas 6
G T = 11 1= oY 1 = | 7
4 Scientific Component Uploader (SCU)couiiiiiiiiiiiiieeee e 8
O R V1 (=Y AN o3 1 (= o (U= 8
4.2 USE CaSE SY S BIMIS it a e 9
G B |V = T = Yo =T g || Y 1 0 o (= 11
431 Main Manager.dll MOUUIESooiiiiiiiiiiiic e 11
4.3.2 Manager.dll classes diagram...........cooiieiiiiiiiiiiin e e 12

4.4 Utility.dll SLIUCLUIE ..o, 15
441 Main ULtility.dll IDraries.oovvioiiiieieeeeeeeeeeeee e 15
4.4.2 Utility.dll ClasSes diagramuuuurieririiiiiiiiiiiiireieieee e ————————— 16

4.5 Data BaAsSE SHUCIUIEcco oo e e e e e e e e e e e e e 18
4.6 WED-SEIVICES ... 20

5 PriMe WOrkflow APPIICATIONcoiiiiiiiiiiiee et e e e 20
5.1 SYSIEM @rCNITECIUIEuuuiiieiii eeas 20
5.2 USE CaSE PV A 21
TG B O] 1 0] o To 1= 0| B8 1Y/ 012 T PPN 23
5.4 The component integration With PWA ... 23
54.1 Local components (MATLAB)uuuuiiiiiiiiiiiiiiiiiiiiiiiiererereeeerreraseerneansernneeaneeaaeeennaane 23
5.4.2 REMOTE COMPONENTS ...t e e e e e e e e 25

5.5 EXECULING PrOJECT.. ..o 26
LN I =TT oo] 1 0 01U (=] SRR 28
5.6.1 Main modules of the PrIMeKineticsClient.dll librarycccouviiieiiiiiiiiiiiiieeen. 29
5.6.2 (O 1= 1TSS TS o [=T | = o PN 30

5.7 ApPliCAtioN SEIVEI SITUCTUIEccoiiiiiiiie ettt e e e e e e e e e e e anae 36

5.7.1 ApPPliCAtioN SEIVEE SLIUCTUIEuuieeeceeeee e e s a s 36

5.7.2 ClaSSES TIAGIaIM.......ciiiiiiiiiiiiee ettt e et e e e e e s e e e e e e e s s eaeeeas 38

5.8 ULIlItY.AIl SITUCTUIE ...uviiiiiiiiiiii e s a e e e e a e e e a e 41
5.8.1 MaIN MOTUIES ... e e e e e 41

RS T2 O = 11 YT o [T Vo |- o R 42
5.8.3 Database StrUCTUIEoiiiiiieee e 44

5.9 WED-SEIVICE DESCIIPLION. .. .uutiiiiiiiiiiitiieii e e e e e e s e e e s e e e e e e e e eeas 47

6 TECNNOIOGIES USEU.... ...ttt e et e e e e e e 48
6.1 PIIME POIAL. .. .oeiiiiiiiii et 48
6.2 Scientific Component Uploader and PrIMe Workflow Applicationcccccccevviivvnnnne. 48
IR I AV o o] o= 1 (o] g IE=T=T A/ =] GO 48

7 Personnel SUPPOITEAuuiiiieeiiiiiiiiei et e e e e e s st e e e e e e e e eeeas 49
8 Publications and PreSentationsooiiiiiiiiiiiiiieeeeee e 49
9 SIGNIfICANT INTETACTIONS......eeiiiiiieeei ittt e e e e e e e e e e e e e e 49

1 Introduction

PrIMe (Process Informatics Model) is a new approach for developing predictive models
of chemical reaction systems that is based on the scientific collaboratory paradigm and takes
full advantage of existing and developing cyber infrastructure. The primary goals of PriIMe are
collecting and storing data, validating the data and quantifying uncertainties, and assembling the
data into predictive models with quantified uncertainties to meet specific user requirements.
The principal components of PrIMe include: a data Depository, which is a repository of data
provided by the community, a data Library for storage of evaluated data, and a set of computer-
based tools to process data and to assemble data into predictive models. Two guiding
principles of PrIMe are: open membership—a qualified individual or industrial organization can
register to participate in the project; and open source—all submitted data, tools and models will
be in the public domain

1.1 Purpose of the document

The current document describes the PriIMe Workflow Application architecture and its
internal structure. Component functionality is depicted in the form of Use Case diagrams.
Class diagrams, consistency diagrams, data-base scheme and components diagrams are used
to demonstrate system design and component interaction.

The document consists of the following chapters:
1. The common system structure and the purpose of its modules.
2. PrIMe portal description and functionality.
3. Component Uploader general architecture description and functionality.

4. PrIMe Workflow Application general architecture description and functionality.

2 The common system structure

The common structure of PrIMe is shown in Figure 1. It consists of the following
components:

1. PrIMe portal is responsible for system user management. It implements user
authorization and authentication services, assigns user roles, and manages user
permissions. Additionally, it enables users to collaborate. In the PrIMe portal you can
find information concerning the latest changes, documentation, operating instructions
and so on. The site is a portal to two additional systems—Scientific Component
Uploader and PrIMe Workflow Application.

2. Scientific Component Uploader (SCU) is used to develop and deploy new scientific
components. It allows the scientific component developer to upload a new scientific
component, assign resources to components, and edit properties and configuration
information of his/her previously developed components. All changes made by
developers are stored as separate revisions, allowing a developer to open and edit any
existing revisions. Only a user with administrator privileges can create a new revision
and deploy it to the PriMe Workflow Application (PWA).

3. PrIMe Workflow Application (PWA) is the site where a user works with scientific
workflow projects. The scientific workflow project is built using preconfigured scientific
components which are linked together in a network. The user can set input and output
information for each scientific component and if applicable, the user can set configurable

Component uploader
——CO Development new component, shapes

——O Work ith revisions
—O Uploab revision to production
I

Development Portal
(http://
primekinetics.org)

——O Authentification service

——O Service for working with users

I
|
I
I
I
|
|
I
I
I
—+—O Project managment }
I
I
|
I
I
I
|
|
I

T

I

I

l

|

} PriMe Workflow App.
} +—O Create, open, edit, delete worhkflow
I

I

——O Running workflow

Figure 1. Components of the PrIMe structure

properties of a scientific component. In the PrIMe Workflow Application a user can
create new scientific workflow projects, open existing projects, and execute valid
workflow projects.

3 PrIMe portal

Purpose

The portal administers user management functions and stores workflow project
information. The main system Use Case is represented in Figure 2.

System functions:

1. User management functionality. The PrIMe portal implements user authentication and
authorization. Additionally, it assigns roles to each user and grants permissions to
view/edit the users previously existing workflow projects and scientific components.

2. Content management functionality. = The PrIMe portal manages all application
documentation. This includes the scientific components manuals, system structure
changes, and information concerning development of new scientific components.

Work with site
statistics

Content managment

User managment

Site configuration

Project
administration

Figure 2. PrIMe portal Use Case diagram

3. Authentication/authorization management for PWA and SCU. The PrIMe portal
authenticates, authorizes, and assigns user roles allowing a user to access PWA and
SCU. This is done automatically as the user navigates to the PWA and SCU.

4 Scientific Component Uploader (SCU)

The main purpose of the Scientific Component Uploader is to facilitate the development
and deployment of scientific components. It enables development of scientific components by
managing existing component revisions, component properties, component resources,
configuration information, and allows creation of new scientific components. The scientific
component uploader also allows a developer to test the component before deployment to the
PWA.

4.1 System Architecture
System Architecture is shown in Figure 3. The following main components are represented:

1. Client browser. The client browser allows the scientific component developer to
configure, test, and deploy a scientific component. The SCU utilizes Microsoft Active X
technology which allows executing the libraries native code in the browser context. Upon
loading the SCU, the Manager.dll library is copied to the user's computer. This library
provides all the necessary functionality for development, testing, and deployment of
scientific components.

2. Server. The SCU is located on the server. When a user enters the SCU Manager.dll is
copied to his client machine and is executed in the context of the client browser. The
browser communicates with the server via web-services. All of the functions of the
server are accessed through the Utility.dll library. The functions of the database, and
user authorization and authentication are implemented in Utility.dll. The web-service is
located on the server, which provides the interface for communication between the
Manager.dll library, which is executed on the client, and the Utility.dll library which is
executed on the server.

3. PrIMe Workflow Application. After the scientific component has undergone testing and
is ready for deployment it is uploaded to the PriIMe Workflow Application to allow other
PrIMe users to include the newly deployed scientific component in workflow projects.

SCU is connected with PWA via web-services. An administrator deploys a newly
developed scientific component to the PWA by means of an appropriate web method.

ASP.NET web site

Production site (PWA)

ASP.NET web site

Figure 3. Scientific Component Uploader in the context of the client and PWA

Server

4.2 Use Case systems
The SCU manages scientific components, resources, and component configuration

information. The main functions of the SCU are listed below and the SCU Use Cases
are represented in Figure 4.

Main functions:

1. Manage component resources. The user can upload new component images, edit

images, and remove existing images associated with a scientific component from the
server.

2. Manage scientific components. The SCU enables the user to add, remove, and edit
scientific components.

3. Configure scientific components. The user can configure scientific components by
adding, editing, and removing component inputs, outputs and other properties.

4. Store scientific component location. If the scientific component is a remote type, the
SCU points to the server where the remote scientific component is executed from.

5. Manage component revisions. The SCU captures and saves all changes made by the
user when editing components, resources, and configuration information as revisions.
The MS SQL server stores all revision information.

6. Scientific component testing. The SCU allows the scientific component developer to test
his/her component and confirm that it will work appropriately with PWA.

7. Scientific component deployment. The SCU allows an administrator to deploy any
revision of a scientific component to the PWA.

iew remote resours View local resourse Add resourse

Remov e resourse

v
Install new /
components

\ ’ Upload resourse
/
«extend» «extend»
! ?
/

2 -
/

u/ _«extends»
£

View installed ‘N
components

View resourse

«extend» = Work with resource k¢~ — = - = _ _ _ _ Remov e resourse from
«extend»

Save revision
View properties of v Load revision
selected componen /
«extend» "
/~ «extend»

Work with revisions

- Manager - -
- «extend» Set status of revision in
master
Edit properties of /,1 v
components B s,
N
«extend» «extend»
N

Upload revision to

production site

Change properties of

________________ Work with shapes
shape

«extend»

«extend»” T = = - -

Add shape

«extendr~ _

iew shape structurg

Delete shape

Add shape group

Delete shape group View shape and

properties of shape

Figure 4. Use Case of the SCU

10

4.3 Manager.dll structure
In the Manager.dll library the actions related to resources, components, configuration
information and scientific component deployment into PWA are implemented.

4.3.1 Main Manager.dll modules
The library structure is represented in Figure 5.
The library consists of the following modules:

1. Resources—module to manage resources. Provides operations such as to add new
resources, or delete resources from server.

2. Components—module to manage scientific components. Provides operations such as
add components, edit components, and delete component.

3. Configuration Information—module for working with component configuration
information. Provides functions to add, edit, or delete component configuration
information. It assigns components a specific configuration.

4. Revisions—the module to manage system revisions. Provides the creation of new
revisions, deletion, and deployment of selected revisions to PWA production server.

cmp Components
Add new resource (O)—— gl

Resources
Delete resources (O——

El —OSave revision
—— Delete revision
—OUpload revision on PWA

Add new component(O)—— gl Revisions
P Components
Editcomponento—

Delete componemo—

\\

Add new shape O—
Edit shapes O—
Delete shapeso—

Set component to the shapeo—

Shapes

Figure 5. Manager.dll structure

11

The main Manager.dll classes diagram is shown in Figure 6.

4.3.2 Manager.dll classes diagram

class Shape /

UserControl

Resources

- GetResourcesCallback(object, GetResourcesCompletedEventArgs) : void
- InstallCallback(object, InstallComponentCompletedEventArgs) : void

- LoadRemoteFilesList() : void

- IvRemote_Click(object, EventArgs) : void

- IvRemote_SelectedindexChanged(object, EventArgs) : void

- previewLocalFile(Resourcelnfo) : void

- ResourceDownloadCallback(object, AsyncCompletedEventArgs) : void

+ Resources()

- SendFile() : void

- SetCurrentResource(Resourcelnfo) : void

UserControl
Manager

+ ADMIN_ROLE: string = "admin”

+ comps: List<ComponentHolder> = new List<Compon...
- current_revision_id: int=0

- currentResource: Resourcelnfo = null

- currentUser: string

+ DEBUG: bool = false

- DEVELOPMENT_ROLE: string = "development”

+ dic: Dictionary<Resourcelnfo, bool> = new Dictionary<...
- first: bool = true

- h: ComponentHolder

+ manager. Manager

new_revision_id: int

+

resources: List<Resourcelnfo> = new List<Resour...
role: string = ADMIN_ROLE

+ ComponentLoadedEventHandler(string) : void

+ ComponentNotLoadedEventHandler() : void

+ Manager()

- Manager_Paint(object, PaintEventArgs) : void
+ NotifySessionBroken d
- PerformInitialSetup() : void

«event»
+ ComponentLoaded() : ComponentLoadedEventHandler
+ ComponentNotLoaded() : ComponentNotLoadedEventHandler

UserControl
Shapes

Shapes()

UpdateShapeDefCallback(object, AsyncCompletedEventArgs) : void
UpdateShapesPreview() : void

UploadShapeCallback(object, InsertShapesDefCompletedEventArgs) : void
ValidateXML(string, string) : bool

ValidationCallBack(object, ValidationEventArgs) : void

UserControl
Revisions

- btnProduction_Click(object, EventArgs) : void

- Convert(ComponentinfoHolder) : ComponentHolder
- LoadConfigutation() : void

+ LoadRevision(int) : void

+ Revisions()

+ SaveVersion(): void

- SetVersion() : void

UserControl

Components

cmdEdit_Click(object, EventArgs) : void

cmdinstall_Click(object, EventArgs) : void
cmdRemove_Click(object, EventArgs) : void

Components()

LoadComponentList() : void

IvComponents_Click(object, EventArgs) : void
IvComponents_SelectedindexChanged(object, EventArgs) : void

Form
InstallComponentForm

- manager. Manager

- cmdCancel_Click(object, EventArgs) : void

- cmdChContainer_Click(object, EventArgs) : void

- cmdChDII_Click(object, EventArgs) : void

- cmdChSupportDIl_Click(object, EventArgs) : void

- cmdlnstall_Click(object, EventArgs) : void

- InstallCallback(object, InstallComponentCompletedEventArgs) : void
+ InstallComponentForm(Manager)

- SelectDLL() : string

- ValidateAndUpload() : bool

Form
RevisionManager

- manager: Manager
- revisions: RevisionHolder ([])
- service: SubmitService = new SubmitService()

- cmdCancel_Click(object, EventArgs) : void

- cmdDelete_Click(object, EventArgs) : void

- cmdOpen_Click(object, EventArgs) : void

- IvRevisions_ColumnClick(object, ColumnClickEventArgs) : void
- IvRevisions_MouseDoubleClickiobject, MouseEventArgs) : void
- OpenRevision() : void

+ RevisionManager(Manager)

Figure 6. Manager.dll classes

12

Manager—this module implements main GUI library

Method

Assignment

Manager_Paint

The method activates at window repainting.

Performinitial

Activates once at library download. In this
method the revisions for current user are
downloaded and the library download process
is displayed.

NotifySessionBroken Informs user about the exclusions, appeared
during the process
componentLoaded Component download

Resources—the work with resources is implemented. This class directly process user’s

activities

Method

Assignment

LoadRemoteFileList

The resource list download from server

SendFile

The file download to server

GetResourceCallBack

Response after the completion of resources
download to server

InstallComponentsForm—GUI is implemented for work with components

Method

Assignment

ValidateandUpload

Checks the inputted data correctness and
saves the components

cmdinstall_Click

The processor on request of component
saving

cmdChDIl_Click

The processor on request of library selecting
for component

InstallComponentForm

New component addition

13

Components—work with components is implemented

Method

Assignment

LoadComponentList

Components list download

cmdinstall_Click

Opens the form for components information
input

LvComponents_Click

The processors of component selecting in the
list. Output the detailed information about the
component

Revisions—the work with the revisions is implemented

Method

Assignment

btnProduction_Click

The processor of revisions

download to PWA

on request

LoadRevision

Downloads the specified revision

saveversion

Revision saving

Shapes—the work with shapes is implemented

Method Assignment
ValidateXml Checks xml-description of shapes
UpdateShapesPreview Shapes repainting after changing

UploadShapesCallBack

Shapes storing

RevisionManager—GUI for work with revisions

Method

Assignment

cmbDelete_Click

Revisions deletion

cmdOpen_Click

The opening of specified revision

IvRevision_Click

Selecting revision processor

14

4.4 Utility.dll structure
In the Utility.dll library user authorization and authentication management is implemented.
Additionally the Utility.dll library implements server side functionality of the SCU by storing
scientific components, configuration information, and resources in the database.

4.4.1 Main Utility.dll libraries
The library consists of the following modules:

1. Authentication module. Its main functions are to receive the user credentials, to get the
users roles, and to start a new session for user

2. Revision module. The main functions of the revision module are to get a revision by id,
delete a revision, identify the current revision, and add a new revision.

3. Configuration Information Service. The library provides such functions as get shapes on
revision number, paste the new shape, and get shape by id.

4. Component module. The main functions of the component module are to get all of the
scientific components, to get the scientific components by revision, to add a new
scientific component, and to update the scientific component.

cmp utility /

startUserSession O E getShapesByRevison (O)—]
Authentification Shapes Service
module
getUserBySession (O—— getCurrentShapes (O—
insertShapes ()——
getRoles (O——
getshapesByld (O)——
getUser (O——
getRevisionByld Revision module getAllComponentsC_—— Component module
deleteRevision O— getComponentsByRevision O
tRevisionByUser ()——
getrevisonEyEser UpdateComponents O—
insenRevision(>_
insertComponent(O)—

Figure 7. Utility.dll structure

15

4.4.2 Utility.dll classes diagram

The Utility.dIl classes diagram is shown on Figure 8. The library consists of the following main
classes.

class Class Model /

UserService RevisionService

ClearProductionResource() : void
createRevisionDirectory(string) : void
DeleteRevision(int) : void

GetMasterRevision() : RevisionHolder
GetMaxRevisionByUser(int) : RevisionHolder
GetRevisionByld(int) : RevisionHolder
GetRevisionsByUser(string) : RevisionHolder(]
InsertRevision(string, bool, string, string, DateTime) : in

SetMaster(int) : void

GetCurrentRoles() : string
GetCurrentSession() : string

GetCurrentUser() : string

+
¥
+
+ GetDrupalUserByName(string) : DrupalUserinfo
+
¥
+

GetDrupalUsers() : DrupalUserinfo[]
GetUserBySession(string) : string
StartUserSession(string, string) : void

R A T

RevisionHolder

_public: bool
author: string
date: DateTime
description: string

master: bool
revision_id: int
Utils - user_id: int
enc: ASCIIEncoding = new ASCIIEncoding() «property»

md5: MD5 = new MD5CryptoSe...

Author() : string
Date() : DateTime
Description() : string
Master() : bool
Public() : bool
Revision_id() : int
User_id() : int

+ GetMd5Sum(gtring) : string

P

ComponentsService

GetAllComponents() : ComponentinfoHolder]]
GetAvailableComponents() : ComponentinfoHolder(] ShapeService
GetComponentByRevision(int) : ComponentinfoHolder[]

InstallComponent(string, string, string, string, string, string, string, string, string, string, int) : void
SetObsolete(int, bool) : void

UpdateComponent(int, string, string, string, string, string, string, string, string, string, string) : void

DeleteShapes(int) : void

GetAllShapesDefs() : ShapeDefHolder(]
GetCurrentShapes() : ShapeDefHolder
GetShapesByld(int) : ShapeDefHolder
GetShapesByRevisionld(int) : ShapeDefHolder!
InsertShapesDef(string, string, string, int) : int
SetCurrentShapes(int) : void
UpdateShapesDef(int, string, string) : void
UpdateTestShape(string) : void

+ o+ o+ o+ o+ o+

+ o+ o+ o+ o+ o+

Figure 8. Utility.dll classes

UserService—in this class the service for work with user is implemented

Method Assignment

GetCurrentRoles Returns the current user roles

GetCurrentSession Returns the session of current user

GetDrupalUsers Returns all the users, which are registered in
the system

GetUserBySession Returns the users on session

StartUserSession Starts the new session for specified user

16

RevisionService—service for work with revisions

Method

Assignment

CreateRevisionDirectory

Creates new catalog, where all the revisions
and library component will be stored

DeleteRevision

Deletion of the specified revision

GetMaxRevisioByUser

Returns the last revision, which user edited

InsertRevision

Inserts new revision

GetRevisionByld

Returns revision by specified id

ComponentService—service for work with components

Method

Assignment

GetAllComponents

Returns all the components

getComponentsByRevision

Returns the components by revision

UpdateComponents

Updates the information about the specified
component

InstallComponent

Adds new component

ShapeService—service for work with shape

Method

Assignment

DeleteShapes

Deletion of specified shape

GetAllShapesDef

Returns all shapes

InsertShapesDef Addition of new shape description

UpdateShapesDef The update of specified shape

GetShapesByRevision Returns the shapes description for specified
revision

GetShapesByld Returns the shape description by specified id

17

4.5 Data Base structure
Data base structure is shown in Figure 9.

class Schemal /

MatlabComponents |:|

«column»

*PK Componentld: int

* Name: nvarchar revisions |:|
Description: nvarchar
DII1: nvarchar «column»
DII2: nvarchar *PK revision_id
DII3: nvarchar & user id_
Dll4: nvarchar desc_ription
DII5: nvarchar > author
Container: nvarchar * date
SupportDIl: nvarchar * public

* UploadTime: datetime w master

* Author: nvarchar

. et e

. + PK_revision(int)

«PK>»

+ PK_MatlabComponents(int)

+ PK_revision(int)

ShapeDefs D
UserSession |:| e —
*PK ShapeDefld: int
ERIIL * Xml: ntext
- , :
3ESS|N0n|D Description: nvarchar
N Rfﬁ:}same Author: nvarchar
* UpdateTime: datetimg
Current: bit

* revision_id: int

«PK>»
+ PK_revision(int)
+ PK_ShapeDefs(int)

Figure 9. Data base structure

UserSession—A unique line identifying the user’s session is stored in this table

Method Description
Sessionld Session identifier
UserName User’s login
Roles User’s roles

18

Revisions—the revisions created by users are stored

Method Description

Revision_id Revision identifier

User_id User identifier, who stored this revision

Description Revision description

Date Creation date

Public The indication that the revision is public and
available for viewing for all the users

Master The indication that the revision has already been

deployed to the PWA

ShapeDefs—shapes description

Method Description

ShapeDefld Shapes description Identifier

Xml Xml-description shapes

Description Shapes description

Author The author who created shapes

updateTime The update time

Revision_id The revision identifier, to which the shapes refer

MATLABComponents—component information

Method

Description

Componentld

Component identifier

Name

Component name

Description

Component description

DIll1, DII2, DII3, Dli4, DII5

Libraries names

SupportDlI Library name, that provides the interface of
connection with PWA

Revision_id Revision identifier, to which the component is
referring

Author The author who created the component

Obsolete The indication of that the component is out of date

UploadTime The component download time

19

4.6 Web-services
Web services provide a convenient method of communication between client and server

via HTTP protocol. A short description of main methods is presented below.

Method Description

GetAllComponents Returns all the components from server
GetShapesByld Returns shapes by id

GetResources Returns resources by revision
GetLastRevisionToUser Returns the last revision for user
InstallComponent Adds new components

InsertShapesDef Adds new shapes

GetShapesByRevision Returns shapes by resource identifier
GetComponentByRevision Returns components by revision identifier

5 PrIMe Workflow Application

The purpose of the PriMe Workflow Application (PWA) is to provide a user interface for

working with scientific workflow projects.Using the PWA, the user can create, open, and execute
scientific workflow projects. A scientific workflow project is comprised of a network of linked
scientific components.

5.1 System architecture

The general system architecture of the PWA is represented in Figure 10.

The PWA consists of the following elements:

1.

2.

Server. The server is the main server where the PWA is executed from. All of the
functions of the server are accessed through the library Utility.dll. The authorization and
authentication process and also the database work are accomplished by means of the
Utility.dll library. The interaction with the client's browser and application servers is
facilitated through web-services.

Application server. Remote applications are executed remotely from the client on the
application servers. Web-services facilitate interaction with the client’'s browser and
PWA.

Client. PWA is executed in the context of the client’'s browser with the use of the
PrIMeKineticsClient.dll library. Through the client the user can create scientific workflow
projects, update existing scientific workflow projects, and execute scientific workflow
projects. The PrIMeKineticsClient.dll library interacts with MATLAB components through
a library called ComponentsFromMatLab.dll, with which it directly communicates.

MATLAB components. The MATLAB components are downloaded to the client and
activated at the execution of the scientific workflow project.

20

Client

MatLab

Tomcat

Tomcat

ASP.NET web site

Local stored with Local stored with

with the application with the application

descriptions and descriptions and
Application serverl Application serverM

result of the work of result of the work of
application application

Server

Figure 10. PWA Architecture

5.2 Use Case PWA
The function of the PWA is to work with scientific workflow projects. Use Case of the
PWA is represented in Figure 11.

The main functions of the PWA are:

1. Project management. The PWA enables creating, editing, and deleting of scientific
workflow projects.

2. Project collaboration. The PWA allows a user to classify a scientific workflow project as
private, shared, or public. Setting a scientific workflow project as shared or public allows
multiple users to collaborate on a project.

3. Custom project building. The PWA allows the user to create a scientific workflow project
from available scientific components. The user accomplishes this by moving scientific

21

components to the project plane, defining the scientific component relationships with
links, and specifying scientific component inputs and properties.

Project execution. Once the scientific workflow project is created, the scientific
components linked, and the inputs and properties are set for each scientific component

the project can be executed in PWA. Following execution, the results can be viewed in
PWA.

uc PWA

Open workflow

Edit workflow
I

N, 1 . <
AR ! -

N s

RN «extend» PR
. H .
«extend» I _<<extend»

N

Save workflow

S

-~ “«extend»

«extend» -

~

~

Share workflow

add shapes

user

-~
~
-~
~

Input data

«extend» =\ -

4‘ - ge;tend»
Work with shapes

I
«extend»

delete shapes

Figure 11. Use Case diagram of the PWA

22

5.3 Component types
There are two types of scientific components available for building of scientific workflow
projects: local and remote. The following is a description of each type.

1. Local components. The local components, created using MATLAB, are executed
directly from the user's computer. Upon execution of a scientific workflow project
local components are copied to the client computer. The work results from each
local component are also saved on the client computer.

2. Remote components. Remote components are executed from remote servers and
interact with PWA using web-services. Multiple remote components can be hosted
on a single server.

5.4 The component integration with PWA
5.4.1 Local components (MATLAB)

In order for the PWA to execute the local MATLAB components on user's computer the
MATLAB runtime library must be installed.

A special support library, called ComponentsFromMatLab.dll provides the interface
between the client browser and the local scientific components. PrIMeKineticsClient.dll
communicates with the local scientific components through the ComponentsFromMatLab.dll
library. Upon execution of a scientific workflow project each component is executed by means
of the library methods which control it. At the beginning of project execution the support library
downloads each MATLAB component to the local computer. Each component is executed by
the MATLAB runtime library. The support library, ComponentsFromMatLab.dll, controls the
execution of each local scientific component.

When the scientific workflow project is executed all of the project information is stored on
client's computer in a catalog called ProjectData.xml. This catalog encodes the scientific
component relationships, description, properties, the location of results, and the completion
status of each component. The paths of each component results are given in the catalog.
ProjectData.xml is recorded only once at scientific workflow project execution. Below, an xml
example is represented. Each component in the project is represented by a <node> element, in
which all of the input properties and information about the connected components is recorded.
The completion status of each component is recorded as 1 (success) or O (failure).

<?xml version="1.0" encoding="utf-8" ?>
<project id="165" modified="29.09.2008 15:26:55" executed="" creator="alx" status="1" lastinternalld="8" >
<nodes>

<properties>

<status>0</status>

<resultObj></resultObj>

<about>This node supplies a model.</about>

<icon>model.gif</icon>

<list description="Model Source" group="attributes" name="Source" readOnly="False">
<option value="1" caption="PrIMe Warehouse" link="http://prime-
warehouse.berkeley.edu/depository/models/catalog/m00000003.xml" selected="true" >from PrIMe Warehouse</option>

““““ >from local machine</option>

</list>

<list description="Model Type" group="attributes" name="Type" readOnly="False">
<option value="1" caption="detailed" link="" selected="true" >A detailed model</option>

23

>reduced model</option>
<option value="3" caption="tabulated" link="" >tabulated model</option>

</list>

</properties>

<location width="92" height="62" x="43" y="315" />

<layout>
<image x="0" y="0" file="model.qgif" />

</layout>

<inputs>

</inputs>

<outputs>
<output id="1" x="45" y="54" linkNodeld="4"

</outputs>
</node>
</nodes>
</project>

We will now review the ComponentFromMatLab.dll in more detail. The purpose of the
ComponentsFromMatLab.dll library is to provide methods for scientific components developed
by third-party developers, such as custom built MATLAB programs, to be integrated with PWA.
Scientific components must follow integration rules defined in PWA (ProjectData.xml). The

interface library must contain one or more classes with methods having the following prototype:

public static void RunComponent(string componentPath, string integrationCatalogPath, string worflowld, string
nodeld)

Each of the arguments is described below:

componentPath—absolute path of component files location
integrationCatalogPath—absolute path of integration files location
worflowld—workflow 1D

nodeld—node ID

Below is an example of a .NET interface for local MATLAB components:

using System;

using System.Collections.Generic;
using System.Text;

public class MatlabCompsSupportClass

public static void RunPFR(string ctfPath, string path, string wfld, string nodeld)

MatlabComponents mc = new MatlabComponents(ctfPath); // instantiating main class for components bundle
mc.run_pfr(path, wfld, nodeld); // running the component

}

It is necessary to modify the main stub class generated by MATLAB Builder for .NET in order to
pass the CTF file location explicitly because it uses current directory by default. The only
requirement is to replace the static constructor with a constructor having the installation path as
a parameter. An example is shown below.

public MatlabComponents(string ctfFilePath)

if (MWArray.MCRApplnitialized && mcr == null)
{
mcr = new MWMCR(MCRComponentState.MCC_matlab_comps_name_data,
MCRComponentState. MCC_matlab_comps_root_data,
MCRComponentState.MCC_matlab_comps_public_data,
MCRComponentState. MCC_matlab_comps_session_data,

24

MCRComponentState.MCC_matlab_comps_matlabpath_data,
MCRComponentState.MCC_matlab_comps_classpath_data,
MCRComponentState. MCC_matlab_comps_libpath_data,
MCRComponentState.MCC_matlab_comps_mcr_application_options,
MCRComponentState.MCC_matlab_comps_mcr_runtime_options,
MCRComponentState. MCC_matlab_comps_mcr_pref_dir,
MCRComponentState. MCC_matlab_comps_set_warning_state,
ctfFilePath, true); // pass contuctor parameter to MWCR initializer

}

else

throw new ApplicationException("MWArray assembly could not be initialized");

}
}

5.4.2 Remote components

Configuration information of the remote components must have the ability to add “remote
execution” tag to a component. This tag will have following properties:

—Application name
—IP address and port of remote server

The PWA server stores information for each scientific workflow project which contains remote
components such as projectid, nodeid, applicationid, status, and jobid. For each executed
scientific workflow project a unique jobid is assigned.

There is a button on the scientific component property page which runs a remote application.
When user clicks it the following will happen:

1. Workflow process client makes request to main server.

2. The PWA server checks the status of this node. If it's not running the server makes
a web-service call to the appropriate remote server. The component job status is
switched to “running” and project status becomes “read-only” until the remote
application finishes the job or fails. Only one remote process can be run for each
project at a given time.

3. The PWA user can check status of remote execution.

4. The PWA server polls the status of each component. Any delay is recorded in a
config file. When the job is finished the main server downloads results and sets job
status to “competed” and project status to “editable”.

According to the multiplatform implementation requirement we propose that a remote server
communication module in Java is implemented. This module will have following functions
available via web-services:

—ping—to check connection and server availability

—add job parameters

—start job

—check job status
—return job results

25

5.5 Executing Project

After the creation of the scientific workflow project, the user can execute it. The scientific
workflow can consist either of local components (MATLAB), or of remote components, which
are implemented on remote application servers. The execution logic is the same for remote and
local components. In Figure 12 the process of executing a scientific workflow project is shown.

custom User Interface Model/

CreatelList of the
incomplete shapes. Store
current count of the
incomplete shape

CheckStatus node.
Check status remote
components

1

~ ! R
|
1

1
1
1
1
1
1
1
1
[Get shape) 1
1
1
1
1
1
1
1

Shape are local orremoteX = > - - - - =

V

Execute remote shape

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
! Execute local shape
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Add shape to remote list

Figure 12. Activity diagram of executing a scientific workflow project

26

The process to start execution of local components is trivial. The appropriate method
from the support library is simply activated. The execution of a remote component is
represented more exactly in Figures 13 and 14.

Ping failed

IIIIEHIHIII'

failed
Ping Application Server

Not completed

success

Get result file from server ant put it into integration catalog

Check job status - getJobStatus(jobld)

Transfer all files from integration canalog on the client machine
(/projects/project_1/) to the application server
Ping success
7/
Start job on the server - startJob(jobld) //

/
Y 4 Success
/
/

Gransfer files to the server - addParameterToNode(url, projectld, nodeld)

(Create Job on server - createJob(jobld, workflowld, applicationld, nodeldD_/y@nsfer projectData.xml on the server - addParameter(jobld, x@

Figure 13. State diagram of execution of the remote component

27

Workflow Client PrimeKinetics web server Remote application server Remote component
0

ping

result ping

Create job(jobld, wild, nodeld, applicationld)
]

Transfer ‘ProjectData.me

I
T
|
i
Transfer result file from other component

|
stratJob(jobld) run component

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
»
-
|
|
|

> set status started

getJobStatus(jobld)

reading file with status set status completed

\J

ﬁ
)

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

g

c

w
vLV[]I!V!VL!!

Figure 14. Activity diagram of executing a remote component

5.6 User’'s computer

Upon starting PWA, the following three libraries are copied to the client computer:
PrimMeKineticsClient.dll, ComponentsFromMatLab.dll, and matlab_component.dll. All functions
for working with diagrams, starting project implementation, and interaction with server
applications are executed in these libraries. Figure 15 shows all of the elements of PWA that
are stored on the client computer.

PrIMeKineticsClient.dll—This library is implemented in the context of browser, in which
all the functions for creating and editing scientific workflow projects and their execution is
implemented.

Support Library (ComponentFromMatLab.dIl)—This library represents the interface
for the interaction with MATLAB components. PriMeKineticsClient.dll does not know about the
components and their structure, yet it only knows the methods of the support library by which
they are controlled.

28

MATLAB component(matlab_comps.dll)—This is the library, which directly controls
the programs from MATLAB. This library is generated by the MATLAB Builder for .NET
application. The library is connected to the support library and represents the required classes
and functions for MATLAB programs.

cmp client /

MatLab component(matlab_comps.dll)

Execute MatLab componentO— L[> MatlabRuntime

| o e e e e e e -
Run workflowo PriMeKineticsClient.dll 1

()\ Local storage

ProjectDirectory E]

ProjectData.xml B

o)

D)

Node directory 1 B
Support Library(ComponentFromMatLab.dll)

Run componento_
result.data E]

Node directory 2 B

Web browser

Node directory 3 g

result.data E]

Figure 15. System components which are located on the user’'s computer

5.6.1 Main modules of the PrIMeKineticsClient.dll library

The general structure of the PrIMeKineticsClient.dll library is represented in Figure 16. It
consists of the following parts:

1. Workflows. This module provides the methods that control scientific workflow projects
such as creation, opening, and deletion of projects, and managing of the system users’
access to the existing projects.

29

2. Shapes. In this module the graphical editor is controlled. It includes how components
are displayed, the properties and input data of each component, and the relationships of
each component in a scientific workflow project.

3. Execute workflow. This module controls how each component is executed and how the
scientific workflow project is executed as a whole. This module manages the process
and order of execution of every component and identifies whether the component is local
or remote type.

uc PriMeKineticsCIient/

createNew Workflow (O)—— Workflows

OpenWorkflow O—

delete workflow (O)——
share workflow O—

Execute workflow O Executeshape

——() ExecuteLocalComponent
_O ExecuteRemoteComponent

_O CheckStatus

addShapes O_ Shapes /\’

moveShapesO_
deleteShapes O

InputParam O_

Figure 16. General PrIMeKineticsClient.dll structure

5.6.2 Classes diagram

The Classes diagrams for the PrIMeKineticsClient.dll library are presented in Figures 17 and 18.
Below a description of each method and class assignment is presented.

30

class PWA /

ShapeProperty

ShapeConnectionPoint

UserControl

m_converter: string =
m_description: string
m_editor: string
m_group: string =
m_name: string =""
m_readOnly: bool = false

+oF b b oFF o+ o+

+

* o4 o+ o+ +

«property»
+ Converter() : string

Copy() : ShapeProperty
GetDefault() : object

ControlLib.Shape
Connector

GetTypeValue() : object -
GetValue() : object
LoadFromXml(XmiNode) : void
SetDefault(object) : void
SetValue(object) : void
ToXml() : string

+

Description() : string
Editor() : string
Group() : string

ApplyAlign() : void

Connector()

Connector_MouseEnter(object, EventArgs) : void
Copy() : Shape

DoMouseDown() : void

DoMove() : void

DoPostDrag() : void

DrawArrow(Graphics, Pen, int, int, int, int) : void

DrawShape(Graphics) : void
Notifylnvalidate(Rectangle) : void
RemakeSizeAndLocation() : void

+ o+ o+ o+ o+ o+ o+

Name() : string UnLink() : void

ReadOnly() : bool

ConnectToPoint(ShapeConnectionPoint) : void

+ o+ o+

Copy() : ShapeConnectionPoint
DoMouseUp() : void

DoMove(Point, bool) : void

DoMove(Shape, Point, bool) : void
DoMoveDelegate(Shape, Point, bool) : void
DrawPoint(Graphics) : void
OnPaint(PaintEventArgs) : void
OnPaintBackground(PaintEventArgs) : void
PointToScreeenAsync(Shape, Point) : Point
PointToScreeenDelegate(Shape, Point) : Point
RedrawT hreadProc() : void

SetlLocation() : void
ShapeConnectionPoint()

ToXml() : string

UnLink() : void

UnLink(ool) : void

XmlAttr(string, object) : string

[

H b+ o+ o+

xml_name() : string

UserControl

Workflow ClientCtl

+ +

+ +

ApplyState() : void

checkCompletedNode() : void
CheckMCR77Installed() : bool

ClearWorkflow() : void
createComponentlinputXml(string, string, string, string) : string
CreatelntegrationCatalogs() : void
deleteOption_Click(object, EventArgs) : void
deleteToolStripButton_Click(object, EventArgs) : void
deleteToolStripMenultem_Click(object, EventArgs) : void
ExecuteShape(Shape) : bool
getinputDataByNode(XmIDocument, string) : string
getLinkedNode(string, string) : List<int>
GetWorkflowXml() : string

LoadAssemblyDII() : void
LoadMatlabComponents() : void
LoadProjectFromMatlab() : void
LoadRecentWorkflows() : void

LoadShapes(string) : void

LoadWorkflow() : void

LoadWorkflows() : void

LoadWorkflowXml(string) : void
PerformInitialSetup() : void

PFR_CheckAndInstall() : bool
RemoveShape(Shape) : void
RemoveShapeDelegate(Shape) : void
RepaintShapes() : void

RunProject() : void

RunProjectinternal() : void
saveAsStripButton_Click(object, EventArgs) : void
saveToolStripButton_Click(object, EventArgs) : void
SelectGroup(int) : void

SetProcessStatus(string) : void
SetProcessStatusDelegate(string) : void

ConnectToPoint(ShapeConnectionPoint, bool) :

void

Shape

UserControl

Form
ShapePropertyDialog

- executed: bool = false

- hasExecute: bool = false

- hasRemote: bool = false

- oldStatus: int = (int)ShapeState...
- onlyStatusModify: bool = true

- parent: WorkflowClientCtl

- shape: Shape

- valueChanged: bool = false

e

otk ot F o+

e T

AddConnectionPoint(ShapeConnectionPoint) : void
AddConnectionPointAsync(ShapeConnectionPoint) : void
AddConnectionPointDelegate(ShapeConnectionPoint) : void
AddResizer(ShapeMode) : void
AddResizerAsync(ShapeResizePoint) : void
AddResizerDelegate(ShapeResizePoint) : void
ChangeShapesChainStatus(int) : void
CheckStatusBefore() : bool

Copy() : Shape

DoMouseDown() : void

DoMove() : void

DoPostDrag() : void

DrawShape(Graphics) : void

DrawStatus() : void

GetlnputByld(string) : ShapeConnectionPoint
GetOutputByld(string) : ShapeConnectionPoint
GetPropsForDesigner() : PropertyTable
isinputRequiredValue() : bool

MoveShape(int, int) : void

ProcessStatus() : void

ProcessStatusChain() : void
RecalculateCoords(bool) : void
RecurseCheckStatus() : bool

RedrawThreadProc() : void
RemakeSizeAndLocation() : void
RemakeSizeAndLocation(int, int) : void
SetLocation(Point) : void
SetLocationDelegate(Point) : void
SetProps(PropertyTable) : void
SetResizerLocation(ShapeResizePoint, Point) : void
SetResizerLocationDelegate(ShapeResizePoint, Point) : void
SetShapeHeight(int) : void
SetShapeHeightDelegate(int) : void
SetShapeWidth(int) : void
SetShapeWidthDelegate(int) : void

SetSize(int, int) : void

Shape()

ToXml() : string

UnLink() : void

ValidatelnputNodes() : bool

XmlAttr(string, object) : string

Workflow ShareDialog

Form

- cmdCancel_Click(object, EventArgs) : void
- cmdOK_Click(object, EventArgs) : void

- ExecuteClick(object, EventArgs) : void

- RemoteClick(object, EventArgs) : void

+ SetShape(Shape) : void

+ ShapePropertyDialog(WorkflowClientCtl)

- sharedUsers: List<int>
- userDict: Dictionary<string, int>

- btnCancel_Click(object, EventArgs) : void
- btnSubmit_Click(object, EventArgs) : void
+ WorkflowShareDialog(List<int>*)

Figure 17. PrIMeKineticsClient.dll classes diagram

31

Shape—the components element, its subtle portrayal, properties set and editing are controlled

by this class

Method

Description

AddConnectionPoint

Adds entry or exit to shape

ChangeShapesChainStatus

Changing shape status at editing of its connections
with other shape.

Copy Shape copy creation. Is activated when user drags
a new shape on the diagram
DoMouseDown Processes the user’'s mouse clicking on shape

isinputRequiredValue

Checks whether the field is required for execution

MoveShape Shape navigation processing

SetLocation Shape setting in specified position on screen
SetProps Property establishment, which user entered

ToXml Shape conversation and all its properties in xml
UnLink Is activating at connection deleting with other

elements on diagram

ValidatelnputNodes

Checks the correctness of entries and exits

XmlAttr

Returns by name the attribute value

GetlnputByld

Returns the shapes entry by identifier

GetlnputByld Returns shapes exit by identifier
SetSize Shape size set
RedrawThreadProc Is activating in separate flow for shape subtle

portrayal at navigation

ShapeConnectionPoint—is used for the
workflow project

connecting components displayed in the scientific

Method

Description

ConnectToPoint

Connects the set point with the other

SetLocation The position set on shape
DrawPoint Point subtle portrayal on the screen
ToXml All the point conversion in xml
UnLink Connection deletion of the point set

32

Connector—is used for displaying lines which connect two diagram elements

Method Description

doMouseDown Processes the user left mouse click and starts
to draw the connecting line

doMove The process of navigation, while the
connecting line changes its size, depending
upon the cursor position on the screen

remakeSizeAndLocation Size and position changing at shapes
navigation

UnLink Diagram deletion

ApplyAlign The application of changes set by user

ShapeProperty—is used to set shape properties

Method Description

LoadFromXml Property download from xml presentation
SetValue Property setting

ToXml Property conversion in xml presentation
GetValue Returns the property value

WorkFlowClientCtl—used by main GUI library

Method Description

ApplyState A new condition application to diagram

CheckCompletedNode Diagram nodes checking

CheckMCR77Installes Checking whether the MATLAB Runtime is
installed

ClearWorkflows New workflow creation

ExecuteShape Component start for application, which is

connected with the indicated shape

getinputDataByNode Returns the shape properties, inputted by user
LoadAssemblyDlI Client component download
LoadProjectFromMatLab Xml download, which modified MATLAB at its

components application

33

LoadWorkflow Workflow opening

RunProject The wuser request: “to start the project”
processing

RepaintShapes All shapes repainting on diagram

RunProjectinternal

Is running in separate flow and manages the
diagram starting process

SetProcessStatus

Displays the diagram starting progress

SaveAsStripButton_Click

Project storing

getLinkedNode

Returns all the shapes, which are connected
on the diagram with the set

CreatelntagrationCatalog

Creates the catalogue on the user's
computer, to which work results will be stored

PerforminitialSetup

Is activating at download, makes all the
necessary initialization, display the library
download process in client’'s browser

RemoveShapes

Shape deletion from the diagram

LoadRecentWorkflows

The download of available for user diagrams

WorkflowShareDialog—GUI to provide the specified projects access to users

Method

Description

btnSubmitClick

The application of rights, set by user

btnCancel_Click

The processing of user clicking cancel

workflowShareDialog

Kit, downloads and displays the list of all the
system users

ShapePropertyDialog—GUI setting shape property

Method

Description

cmdCancel_click

The processing of user clicking cancel

cmdOK_Click

The application of all the properties set by user

SetShape

Connects the selected shape from the GUI
data, so displays the inputted properties and
remembers shape, for storing of new
properties

34

class PWA /

Int List
- m_defaultvalue: int=0 - m_description: string =
- m_descnpnop: string = = LRI string = imags
- m_group: string - m_name: string
- m_name: string ="" - m_readOnly: bool = false - m_file: string
- m_readOnly: bool = false + options: List<ListOption> = new List<ListOp... - position: Position = new Position()
+ FromXML(XmINode) : void + FromXML(XmINode) : void + FromXML(XmINode) : void
+ GetDefaultinstance() : object + GetDefaultinstance() : object + GetDefaultinstance() : object
+ GetNodeName() : string + GetNodeName() : string + GetNodeName() : string
+ ToXML() : string + ToXML(): string + ToXML() : string
«property» «property» «property»
+ DefaultValue() : int + Description() : string + File(): string
+ Description() : string + Group() : string + Position() : Position
+ Group() : string + Name(): string
+ Name(): string + Options() : List<ListOption>
+ ReadOnly() : bool + ReadOnly() : bool

IntPropety

ShapeProperty

Float

- m_defaultvValue: double =0

m_defaultintValue: int
m_intValue: int? = null

- m_description: string =""

el - m_group: string =""

- center: Position = new Position() BaseNode - m_name: string =""
- m_r int - m_readOnly: bool = false

- . + .
+ GetDefault() : object L ies (HCRETe o zfmmi?ibﬁi:l?:ndcee)d :Vglt:ﬁect + FromXML(XmINode) : void
+ GetTypeValue() : object + FromXML(XmINode) : void | — >+ GetNodeName(: string B — GetDefaultinstance() : object|
: I?Oe;)i/zrl;;g.m?giiﬁ\lode) o sl + GetDefaultinstance() : object + ToXML() : string + GetNodeName() : string
+ SetDefault(object) : void i fcEtNodeNam ORI # XmlAttritring, oblectigeelil] SATOXML0 iy
h 7 i + ToXML() : string # XmlINode(string, object) : string| «property»
+ SetValue(object) : void
«property» + DefaultValue() : double
«property» : + Center(): Position + Description() : string
+ IntValue() : int? + Radius): int + Group() : string
xml_name() : string + Typeq: I;ineType + Name() : string
+ ReadOnly() : bool
ShapeProperty
RemoteProperty Bool
- appServerld: string RERCEE e ShapeRIoERE - m_defaultvalue: bool = false
- description: string - description: string BoolPropety - m_description: string =" ShapeProperty
= [EE €l - host: string - m_boolValue: bool? = null - i FloatPropety
- name: siing - id: string - m_defaultBoolValue: bool = falsd = LOENIEE Sl =
- port: int - name: string - - m_readOnly: bool = false - m_Defaultvalue: double
. - port: string + GetDefault) : object - - m_floatvalue: double? = null
+ GetDefault() : object + GetTypeValue() : object + FromXML(XmINode) : void =
+ GetTypeValue() : object + FromXML(XmINode) : void + Getvalue() : object + GetDefaultinstance() : object + GetDefault() : object
+ Getvalue(: object]+ Getbefaultinstance(: object| |+ |oadFromxmi(xmiNode): void i SethodeName (R * GetTypeValue(obiSey
+ LoadFromXml(XmINode) : void + GetNodeName() : string + SetDefault(object) : void + ToXML(): string + GetValue() : object)
+ SetDefault(object) : void + ToXML(): string + Setvalue(object): void P + LoadFlomeIFXmlNodg) : void
+ Set\/a\ue(object) : void «property» orobertys + Defaultvalue() : bool + SetDefauIt(opject) B V.Old
*pr;r;:n"‘y‘o : string + Description() : string 2 BooValue) : bool? * gexri%m];o <2 :pr::;zj)l)ue(oblect) 4
« » + s tri EE + Group() : strin
+ AppServerld() : string + EO()S:Oa.(iiI;ng v Sname Oty + Namso E Smngg + FloatValue() : double?
+ Descriptionl() : string + Name(): string + ReadOnly() : bool # xml_name() : string
+ Host(): string + _Port() : string
+ Name(): string
+ Port() :int
xml_name() : string

Figure 18. PrIMeKineticsClient.dll class diagram

Classes displayed in Figure 18 are used for the storing information about the scientific workflow
projects and their structure stored in ProjectData.xml.

BaseNode—is used for the storing information ProjectData.xml. This is the base class

Method

Description

FromXml

Creates the node on the bases of xml
description

GetNodeName

Returns the node name

XmlAttr

Returns the attribute by indicated name

XmINode

Creates XmINode by indicated information

All the other classes Bool, Int, Float, List, RemoteExec—descend the BaseNode class. Their
methods are trivial which is why we will limit it to the BaseNode description.

35

5.7 Application server structure

The Application server stores the applications which are implemented remotely from
client's computer. The interaction with the application server is accomplished through web-
services. The main components of the application server are discussed below.

Web-service—on the Application server web-service is installed, which provides the
interface for the interaction with PWA. Web-service also allows input parameters, component
properties, and component results to be communicated between the application server and the
main server.

Application—application, that makes the necessary calculations based on the input
parameters. Each application must correspond to defined requirements, which are described in
the following paragraph.

Local storage(config files)—these are the necessary configuration files, used by the
web-application.

1. Application.xml—file, where the applications register and the path of the execution
file is indicated.

2. Jobs.property—property-file where the information about the current tasks is stored.

3. Config.properties—configuration profile where the indicated path to the catalog of
application results is saved. This file also creates a log and stores the path of the
application.xml and jobs.property files.

ProjectDirectory—for each project a project directory is created which stores the project
information in a ProjectData.xml file. Each project node has its own directory where the specific
node results are stored.

5.7.1 Application server structure

In Figures 19 and 20 the structure and modules of the Application server are shown.
Web-service facilitates the interaction of the application server with PWA, and manages the
application starting process.

The main modules are presented below.

1. WebService. Web-methods are set, which are used for the interaction with PWA, and
managing the process of starting the application on the Application server.
ComponentRun. Controls the execution of the scientific application.

2. Config. Provides access to the main configuration files.

36

cmp Application /

Application

Application

Local storage

ProjectDirectory g

N, ProjectData.xml El

Node directory 1 E]

addParameter O—
startdob (O——

addParameterToNode (O)——

clean O—|
getJobResult O—

getJobstatus O—

Figure 20. Application Server main modules

createdob O—— wep-services
addParameter (O—
getJobResult (O)— -
Local storage(config files) NEED clisesony & =
startdob O—— application.xml [
addParameterT oNode (O)——|
Node directory 3 B
getJobStatus O— m T~
()\ config.properties E
Web server
Figure 19. Application server structure
cmp ApplicationWebSerive/
ComponentRun _O RuN
createJob O_ Web-Service

@ ——() writeLog

Log

Config ——(getApplication

——(getJobs
——(getLog

_O getPathToProject

37

5.7.2 Classes diagram

The main classes of the Application server are represented in Figure 21. A description of the
Application server and classes follows.

class AppServer /

«interface» Application
IApplicationService

- commandLine: String

addParameter(int, String) : boolean - name: String

addParameterToNode(String, int, int, String) : void
createJob(int, int, int, int) : boolean
getJobResult(int) : String

getJobStatus(int) : int

ping() : boolean

startJob(int) : boolean

getCommandLine() : String
getName() : String
setCommandLine(String) : void
setName(String) : void

+ o+ o+ o+

+ 4+ + F + + o+

KineticsConfig

- applicationfile: String

- config: KineticsConfig = new KineticsConfig
- configfile: String

- jobs: Properties

- jobsfile: String

T
1
1
1
1
1
1
1
1
1
1
1
1
1

v - pathProjects. String

- log: String
- logger: FileWriter
com.softindustry.primekinetics.appserver.websewice.ApplicationSoap - resultStore; St.nng
- urlResults: String
ApplicationSoap12Impl
__]] + getApplication(int) : Application
+ addParameter(int,]ava.lang.stnr?g) :Av0|d . ' + getConfigfile() : String
+ addPa.rameter.ToNode(byte[], int, int, java.lang.Stiing, boolean) : void + getinstance() : KineticsConfig
+ clean(in:void + getJobs() : Properties
+ createJob(mt,.mt, |_nt, int) : boolfean + getJobsfile() : String
+ getJobResuIt(!nt) : !ava.lang.Str!ng + getlog() : String
+ getJobStatgs(mt) : jlava.lang.Smlng + getlLogger() : FileWriter
+ getPathProjects() : Jaya.lang.Strm_g + getPathProjects() : String
+ ggtPathSeparator() : java.lang.String + getResultStore() : String
+ ping() : boolean + getUrlResults() : String
+ startJob(int) : boolean + KineticsConfig()
+ setLog(String) : void
+ setPathProjects(String) : void
+ setResultStore(String) : void
+ setUrlResults(String) : void
Thread Logger FileTransfer
Componen e + writeLog(String) : void + addFileToJob(String, String, String, String) : void
- job_id: int D - getFile(String, String) : void
+ getFileResulJob(String, String) : String

+ ComponentRun(int)
+ run() : void

Figure 21. Application Server class diagram

38

IApplicationServer—the interface describes all the web-methods

Method Description

addParameter Receives the input information for specified
node

addParameterToNode Receives the files, which contain the work
results of nodes connected with the specified
ones

Clean Clears the catalogue of node specified

createJob Creates the new Job on server

getJobResult Receives the work result of indicated job

getJobStatus Receives the work result of specified job

getPathProjects

Returns the path to catalogue, in which all the
files of current projects are stored

getPathSeparator Returns the file separator for current OS(*/” for
Unix or “\” for Windows)
startJob Of indicated job starting for implementation

Application—contains the information about the scientific application

Method

Description

getCommnadLine

Returns the command line, which will start the
applications

getName

Returns the name of scientific application

setCommandLine

Sets the command line

setName

Sets the application name

39

ComponentRun—is used for the scientific application starting. Each application is started in

separate flow

Method Description

Componentrun The constructor, that receives as an input
parameter job identifier

Run Scientific application start

KineticsConfig—class, that provides the access to the main configuration files

Method

Description

getApplication

Returns the application by identifier

getConfigFile

Returns the path to the main configuration file

getJobsFile Returns the path to the file, where the
identifiers of current jobs are stored

getPathProjects Returns the path to the catalogue where the
information of current projects is stored

getUrIResult Returns the url where the applications work
results will be stored

getLogger Returns the url on Logger class, which can be

used for logs

40

5.8 Utility.dll structure
The Utilty.dll library in the server is used in executing remote applications. In this library the
authorization, authentication, and data base work are managed. Its main structure is
represented in Figure 22 and consists of the following parts:

Authentication module: Provides site’s users authorization and authentication service on the
application server.

Application Service—used to process scientific application requests.

2. JobService—used to process current jobs, and track execution status.
3. ComponentService—The service for component downloads.
4. WorkflowService—The service for work with the workflow.

5.8.1 Main modules

cmp PWA Utility.dll /

startUserSesson O—— Authentification Applicationservice — ——(O getAllApplications
module
getUserBySession (O)—
_O getApplicationld
getRoIesO—
——() checkApplication
getUser O_

5]

ShapeService

_O getShapesDef

insertdob (O—— JobService
getJobByld (O)——

updateStatus (O—

E ——) addWorkflow

Workflow Service

" —C) saveWorkflow
ComponentService saveivordio

getComponents (O)——

_O getRecentWorkflow
_O deleteWorkflows

Figure 22. Utility.dll main modules

41

5.8.2 Classes diagram

The main library classes are presented in Figure 23.

class Utility PWA

ApplicationService

CheckApplication(string, string, int, string, int) : void
GetAllApplications() : ApplicationHolder[]
GetApplicationByld(int) : ApplicationHolder
GetApplicationld(string, string, int, int) : int

+ o+ o+ o+

JobService

GetJobByld(int) : JobHolder
getJobBylInfo(int, int, int) : JobHolde
InsertJob(int, int, int, int) : int
UpdateStatus(int, int) : void

+ 4+ 4+ 4+

Workflow Service

UserService

4y

DEFAULT_STATUS: int=0

GetCurrentRoles() : string

AddWorkflow(string, string, string, string, bool, DateTime) : int

DeleteWorkflow(int) : void
GetRecentWorkflows(string) : WorkflowHolder(]
GetUserBySession(string) : string
GetWorkflowByld(int) : WorkflowHolder
GetWorkflows(string) : WorkflowHolder[]
GetWorkflowStatus(int) : WorkflowStatusHolder
IsProjectNameUnique(string, string) : bool
RunWorkflow(int) : void

SaveWorkflow(string, string, string, string, string, bool, DateTime) : void|

GetCurrentSession() : string

GetCurrentUser() : string
GetDrupalUserByName(string) : DrupalUserIinfo
GetDrupalUsers() : DrupalUserInfo[]
GetUserBySession(string) : string
GetWorkflowSharedUsers(int) : List<int>
ShareWorkflow(int, List<int>) : void
StartUserSession(string, string) : void

o+ o+ o+ o+ o+ o+ o+ o+

setPublic(int, bool) : void
UpdateXmlByld(int, string) : void

+ o+ + o+ o+ o+ o+ o+

ShapeService

ComponentsService

+ GetAllComponents() : ComponentinfoHolder[]
+ GetAvailableComponents() : ComponentinfoHolder[]

+ GetCurrentShapes() : ShapeDefHolder

Figure 23. Utility.dll classes diagram

ApplicationService—the service for storing and receiving information, about the scientific

applications

Method

Description

CheckApplication

Checks the whether the specified application
exists in database or not

GetAllApplication

Receives all the available applications

GetApplicationByld

Returns the applications by the identifier

GetApplicationByld

Returns the application by name, host, and
port on which it functions

42

JobService—the service for the work with the current tasks on applicationServer

Method Description

GetJobByld Receives Job by the identifier

insertJob Adds new Job

UpdateStatus Job status update

getJobBylInfo Returns job by project identifier, node and

application

UserService—in this class the service for work with user is implemented

Method

Assignment

GetCurrentRoles

Returns the current user roles

GetCurrentSession

Returns the session of current user

GetDrupalUsers Returns all the users which are registered in
the system
GetUserBySession Returns the users on session

StartUserSession

Starts the new session for specified user

ShapeService—is used for the shapes download to PWA

Method

Assignment

GetCurrentShapes

Returns the shapes set as the xml-description

ComponentService—is used for clients component download

Method

Assignment

GetAllComponents

Returns the available components

WorkflowService—provides the work with diagrams

Method

Assignment

AddWorkflow

To add the new diagram

DeleteWorkflow

To delete the diagram

GetWorkflowByld To receive the diagram by the identifier

SaveWorkflow To save the changes in diagram

setPublic To make the diagram available for system
users

getRecentWorkflows To receive all the available diagrams

43

5.8.3 Database structure

The database structure is represented in Figure 24.

class Data Model

Workflow Process

«column»
*PK WorkflowProcessID
* CreateTime

SubmitTime
* Userld
* Name
Description
Public = ((0))
* Detail

* PercentDone = ((0))
* StatuslD = ((0))

«PK»

«FK»

+ PK_WorkflowProcess(int)

+ FK_WorkflowProcess WorkflowProcessStatus(int)

applications D

«column»
*PK application_id
* application_serverid

* name
* description
* host
port
«PK»

jobs |:|
«column»
*PK job_id
* project_id
* node_id
* application_id|
* status
«PK»
+ PK_jobs(int)

+ PK_application(int)

UserSession |:|

«column»

* SessionID
UserName

* Roles

Workflow ToUser |:|

ShapeDefs |:|

«column»

*PK ShapeDefld

* Xml
Description
Author

* UpdateTime
Current

& revision_id

«column»

*PK WorkflowT oUserld
* Workflowld

* Userld

«PK»
+ PK_ShapeDefs(int)

«PK»
+ PK_WorkflowT oUser_1(int)

MatlabComponents |:|

«column»
*PK Componentld
* Name
Description
DIl1
DII2
DII3
DIl4
DII5
Container
SupportDIl
* UploadTime
* Author
Obsolete
* revision_id

«PK»

+ PK_MatlabComponents(int)

Figure 24. Database structure

44

ShapeDefs—shapes description

Method Description

ShapeDefld Shapes description Identifier

Xml Xml-description shapes

Desciprion Shapes description

Author The author who created shapes

updateTime The update time

Revision_id The revision identifier, to which the shapes

refer

MatLabComponents—component information

Method

Description

Componentlid

Component identifier

Name

Component name

Description

Component description

DII1, DII2, DII3, DIl4, DII5

Libraries names

SupportDlI Library name, that provides the interface of
connection with PWA

Revision_id Revision identifier, to which the component is
referring

Author The author who created the component

Obsolete The indication of that the component is out of
date

UploadTime The component download time

45

WorkflowProcess—the information about the created projects

Method

Description

WorkflowProcessld

Unique project identifier

CreateTime Creation date

SubmitTime The last starting time

Userld The user identifier, who created the project
Name Project name

Description Project description

Public The indicator of that the project is available for

all the users

UserSession—in this table the unique line that identifies the user’s session is stored

Method Description
Sessionld Session identifier
UserName User’s login
Roles User’s roles

Applications—the information about the servers’ applications registered in the system

Method

Description

applicationid

Unique identifier of application server

Application_serverid

The identifier of applications on server

Name Name

Description Description

Host Ip address or DNS host name

Port The port on which the web-server is working

46

Jobs—the information about the current tasks on application servers

Method Description

Job _id Job unique identifier
Project_id Project identifier

Node _id The node identifier on diagram
Application_id Applications identifier

Status Implementation status

WorkflowToUser—the information about the user’s access to the project

Method Description
WorkflowToUserld Unique identifier
Workflowld Unique project identifier
Userld User identifier

5.9 Web-service Description

The PrIMeKineticsClient.dll library interacts with the server by means of web-service.

The main methods used are represented below

Method

Description

GetWorkflow

Returns the workflow by identifier

DeleteWorkflow

Delete the workflow

GetAvailableComponents

To receive all the available components

GetCurrentShapes

To receive the current shapes

GetWorkflowSharedUsers

To receive the users, which have the access
to the project

ShareWorkflow

To set the rights for the project access of
specified users

SetPublicWorkflow

To make the project public

insertJob

To save new job on server

updateJobStatus

To update the job status

clearProduction

The deletion of all the components and
resources

uploadProduction

The new recourses and components and
shapes

47

6 Technologies used

6.1 PrIMe Portal

The PrIMe portal is executed using the PHP language with the help of CMF Drupal-5.
The standard modules of Drupal core set are developed by third parties and obtained from the
repository drupal.org. Part of the modules was modified specifically for the PrIMe portal.

The PrIMe portal uses MySQL for the database technology. It is working on web-server
technology Apache2 under the OC Windows-2003 Server management.

6.2 Scientific Component Uploader and PriIMe Workflow Application

Both the SCU and the PWA utilize Microsoft .NET technologies. All code is written in the
C# language. To enable the feature of native code implementation in the context of the client’s
browser Active X technology was used.

In the capacity of DBMS the MS SQL Server 2005 is used. It is run on web-server IIS
under the management of OC Windows-2003 Server.

6.3 Application server
The application server utilizes Java technologies. For the creation of web-services the
AXIS framework was used. Itis run on tomcat 6 web-server.

48

7 Personnel Supported

This project supported mainly the programming consultant, Michael Gutkin, along with the
Principal Investigator, Professor Michael Frenklach.

8 Publications and Presentations

1.

“Cyber-enabled Data-centric Approach to Predictive Modeling,” M. Frenklach, NSF
Workshop on Cyber-Enabled Discoveries and Innovations, (CDI) Initiative, Seattle, WA,
November 11, 2007.

“PrIMe: Smart Science for Smart Combustion,” M. Frenklach, Z. M. Djurisic, A. Packard,
D. M. Golden, W. H. Green, Jr., and P. J. Smith, 55th JANNAF Propulsion Meeting,
Boston, MA, May 12-16, 2008.

“Analysis of Uncertainty in Model Prediction with Data Collaboration”, M. Frenklach,
Massachusetts Institute of Technology, Department of Chemical Engineering, May 15,
2008.

“A New Platform for Predictive Modeling: PrIMe”, M. Frenklach, John Zink Company,
June 5, 2008.

“PrIMe: Workflow Architecture,” M. Frenklach, M. Gutkin, and P. J. Smith, Work-in-
Progress Poster W5P040, 32nd International Symposium on Combustion, Montreal,
Canada, August 3-8, 2008.

“A New Platform for Predictive Modeling: PrIMe,” M. Frenklach, Z. Djurisic, and
M. Gutkin, Multiagency Coordination Committee for Combustion Research (MACCCR)—
Fuels Research Review, Gaithersburg, MD, September 8-10, 2008.

“PriIMe: Why, What, How,” M. Frenklach, NRC Committee on Cyberinfrastructure for
Combustion, The National Academies, Washington, D.C., March 9-10, 2009.

“Integration of DataCollaboration with PrIMe,” X. You, T. Russi, D. Yeates, A. Packard,
and M. Frenklach, 6th U.S. National Combustion Meeting, Ann Arbor, MI, May 17-20,
2009, Paper No. 12G4.

9 Significant Interactions

In collaboration with Dr. William Roquemore (USAF AFMC AFRL/RZ), Dr. Meredith Colket (UTRC),
and Professor Hai Wang (USC) we establish a PriIMe Work Group for the SERDP project. The
purpose of the group is to exchange the information and data on the ongoing collaborative
research on soot formation. The group is currently administered by Dr. Colket.

49

	AFD-070820-057
	final_report

